Oxygen sensitivity in the sheep adrenal medulla: role of SK channels.

نویسندگان

  • D J Keating
  • G Y Rychkov
  • M L Roberts
چکیده

The hypoxia-evoked secretion of catecholamines from the noninnervated fetal adrenal gland is essential for surviving intrauterine hypoxemia. The ion channels responsible for the initial depolarization that leads to catecholamine secretion have not been identified. Patch-clamp studies of adrenal chromaffin cells isolated from fetal and adult sheep revealed the presence of a Ca(2+)-dependent K(+) current that was reduced by hypoxia. Apamin, a blocker of small-conductance K(+) (SK) channels, reduced the Ca(2+)-dependent K(+) current, and the sensitivity of the channels to apamin indicated that the channels involved were of the SK2 subtype. In the presence of apamin, the hypoxia-evoked change in K(+) currents was largely eliminated. Both hypoxia and apamin blocked a K(+) current responsible for maintaining the resting potential of the cell, and the depolarization resulting from both led to an influx of Ca(2+). Simultaneous application of hypoxia and apamin did not potentiate the increase in cytosolic Ca(2+) concentration beyond that seen with either agent alone. Similar results were seen with curare, another blocker of SK channels. These results indicate that closure of SK2 channels would be the initiating event in the hypoxia-evoked catecholamine secretion in the adrenal medulla.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia

Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate  f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...

متن کامل

Effects of Type 1 and Type 2 Diabetes on Micro-Anatomical Changes of Adrenal Gland in Male Wistar Rats

Background & Aims: Changing the hormonal output of endocrine glands, diabetes leads to the occurrence of secondary metabolic disorders. Neuropathy, on the other hand, is the most common neurological complication of diabetes which affects the neuroendocrine system, in addition to peripheral and autonomic nervous system, contributing to exacerbation of disease severity. In this line, the present ...

متن کامل

Direct effect of hypothalamic neuropeptides on the release of catecholamines by adrenal medulla in sheep - study ex vivo.

Stress causes the activation of both the hypothalamic-pituitary-adrenocortical axis and sympatho-adrenal system, thus leading to the release from the adrenal medulla of catecholamines: adrenaline and, to a lesser degree, noradrenaline. It has been established that in addition to catecholamines, the adrenomedullary cells produce a variety of neuropeptides, including corticoliberine (CRH), vasopr...

متن کامل

Cav1.3 Channels as Key Regulators of Neuron-Like Firings and Catecholamine Release in Chromaffin Cells

Neuronal and neuroendocrine L-type calcium channels (Cav1.2, Cav1.3) open readily at relatively low membrane potentials and allow Ca(2+) to enter the cells near resting potentials. In this way, Cav1.2 and Cav1.3 shape the action potential waveform, contribute to gene expression, synaptic plasticity, neuronal differentiation, hormone secretion and pacemaker activity. In the chromaffin cells (CCs...

متن کامل

O2 sensing in chromaffin cells: new duties for T-type channels.

T-type Cav3 channels are voltage-gated Ca2+ channels that are able to sustain key physiological functions such as low-threshold spikes generation, neuronal and cardiac pacemaking, muscle contraction, hormone release, cell growth and differentiation. This mainly derives from the unique property of T-type channels that activate at rather negative voltages (∼ −60 mV). These channels are ubiquitous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 281 5  شماره 

صفحات  -

تاریخ انتشار 2001